Definitions

Definite integral: Suppose f(x) is continuous on [a, b]. Divide [a, b] into subintervals of length $\Delta x = \frac{b-a}{n}$ and choose x_i^* from each interval.

Then
$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$
.

Antiderivative: An anti-derivative of f(x) is a function F(x) such that F' = f. **Indefinite integral:** $\int f(x) dx = F(x) + C$, where F is an anti-derivative of f.

Approximate integration:

Areas under curves: Choose $n = \text{number of rectangles and choose } x_i^*$ from each

Then
$$\int_a^b f(x) dx \approx \sum_{i=1}^n f(x_i^*) \Delta x = \Delta x [f(x_1^*) + f(x_2^*) + \dots + f(x_n^*)], \text{ where } \Delta x = \frac{b-a}{n}.$$

Commonly x_i^* is chosen to be the right endpoint, left endpoint, or midpoint.

FTC ("integration and differentiation are inverse processes")

Part 1: $\frac{d}{dx} \int_a^x f(t) dt = f(x)$. Know how to apply the chain rule with part 1! Part 2: $\int_a^b F'(x) dx = F(b) - F(a)$ Main application of FTC2: integrating the derivative of F tells us the net change in F(x) from x = a to x = b.

eg, $\int_{t_1}^{t_2} v(t)dt$ = net distance traveled = net change in position from time t_1 to t_2 (not total distance traveled (in general))

Applications

Area between curves: The formulas for the two main cases are:

 $\int_a^b [\text{top function}] - [\text{bottom function}] \, dx$ and $\int_c^d [\text{right function}] - [\text{left function}] \, dy$ Volume: We can find the volume of a solid by adding up areas of cross sections of the solid. The main formula is $\int_a^b A(x) \, dx$ or $\int_c^d A(y) \, dy$ where A(x), A(y) give the area of a cross section of the solid. The two main cases are:

Disks/Washers: $A = \pi((\text{outer radius})^2 - (\text{inner radius})^2)$. Cross sections are perpendicular to the axis of rotation.

Cylindrical shells: $A = 2\pi (\text{radius}) (\text{height})$. Cross sections are parallel (shells) to the axis of rotation.

Work = Force \times Distance

Method I: Distance in pieces: Chop up the distance and add up the work required to move each tiny distance $\Delta x \Rightarrow W = \int_a^b \text{force } dx$.

Method II: Object in pieces: Chop up the object and add up the work required to move each piece the whole distance $\Rightarrow W = \int_a^b$ force \times distance dx.

Hooke's Law: Force required to stretch a spring x units beyond natural length proportional to x: f(x) = kx.

Useful formulas: Force = mass \times acceleration and density = $\frac{\text{mass}}{\text{volume}}$

Note: Pounds=unit of force and Kg= unit of mass

Arc length

$$L = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \text{ if } y = f(x), a \le x \le b.$$

$$L = \int_c^d \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy \text{ if } x = g(y), c \le y \le d.$$

Arc length function: $s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} dt$ = length of arc from the point (a, f(a)) to (x, f(x)).

Surface area of a solid of revolution

Rotation about x-axis: $S = 2\pi \int y \, ds$, Rotation about y-axis: $S = 2\pi \int x \, ds$,

where
$$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 if $y = f(x), a \le x \le b$.

$$ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy \text{ if } x = g(y), c \le y \le d.$$

Center of mass

Let ρ be the uniform density of a plate that is the region bounded by the curves f(x) and g(x), where $f(x) \geq g(x)$.

Moments M_x and M_y : measure the tendency of a region to rotate about the x- and y-axis, respectively:

$$M_x = \rho \int_a^b \frac{1}{2} \left([f(x)]^2 - [g(x)]^2 \right) dx, M_y = \rho \int_a^b x (f(x) - g(x)) dx.$$

Center of mass: Let $A = \int_a^b f(x) - g(x) dx$ be the area of the plate and $M = \rho \times A$ be the mass of the plate. Then the coordinates of the center of mass $(\overline{x}, \overline{y})$ are:

$$\overline{x} = \frac{M_y}{M} = \frac{\int_a^b x(f(x) - g(x))dx}{A}$$
, and $\overline{y} = \frac{M_x}{M} = \frac{\int_a^b \frac{1}{2} ([f(x)]^2 - [g(x)]^2) dx}{A}$

Hydrostatic Force

Pressure: $P = \rho g d$, where $\rho = (\text{mass})$ density of fluid, $g = 9.8 \text{ m/s}^2$, d = depth below surface.

Hydrostatic Force: $F = \int_a^b P \times A \, dx$, where A is the area of strips of height Δx and width determined by our function.

Integration techniques

u-substitution: works for integrating compositions of functions; pick u to be the 'inside' function.

Integration by parts - undoing the product rule: $\int u \, dv = uv - \int v \, du$.

Generally, picking u in this descending order works:

Inverse trig

Logarithm

Algebraic (polynomial)

 \mathbf{T} rig

Exponential

Trig substitutions and integrals: See separate handout.

Partial fractions: -

If necessary, make a substitution to get a ratio of polynomials

If the degree of the numerator is \geq the degree of denominator, do long division first.

Then factor the denominator into linear terms and irreducible quadratics.

factor in denominator term in partial fraction decomposition

$$(ax + b)^k \Rightarrow \frac{A_1}{ax + b} + \frac{A_2}{(ax + b)^2} + \dots + \frac{A_k}{(ax + b)^k}$$

$$(ax^2 + bx + c)^k \Rightarrow \frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}$$

Misc: Sometimes you'll need to "complete the square": eg: $x^2 + 6x + 5 = x^2 + 6x + 9 - 9 + 5 = (x+3)^2 - 4$ (divide x coefficient by 2, square it, and add and subtract it. Note: works when coefficient of x^2 is 1)

Improper integrals

Type 1: infinite interval:
$$\int_a^\infty f(x)dx = \lim_{t\to\infty} \int_a^t f(x)dx$$
, $\int_{-\infty}^b f(x)dx = \lim_{t\to-\infty} \int_t^b f(x)dx$

Type 2: discontinuity in interval: -

$$f$$
 discontinuous at a : $\int_a^b f(x)dx = \lim_{t \to a^+} \int_t^b f(x)dx$
 f discontinuous at b : $\int_a^b f(x)dx = \lim_{t \to b^-} \int_a^t f(x)dx$

$$f$$
 discontinuous at $c, a < c < b$: $\int_a^b f(x) dx = \lim_{t \to c^-} \int_a^t f(x) dx + \lim_{t \to c^+} \int_t^b f(x) dx$

Note!: It is possible that an integral is both Type 1 and Type 2 - see the second midterm.