Definitions **Definite integral:** Suppose f(x) is continuous on [a, b]. Divide [a, b] into subintervals of length $\Delta x = \frac{b-a}{n}$ and choose x_i^* from each interval. Then $$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$. **Antiderivative:** An anti-derivative of f(x) is a function F(x) such that F' = f. **Indefinite integral:** $\int f(x) dx = F(x) + C$, where F is an anti-derivative of f. ## Approximate integration: **Areas under curves:** Choose $n = \text{number of rectangles and choose } x_i^*$ from each Then $$\int_a^b f(x) dx \approx \sum_{i=1}^n f(x_i^*) \Delta x = \Delta x [f(x_1^*) + f(x_2^*) + \dots + f(x_n^*)], \text{ where } \Delta x = \frac{b-a}{n}.$$ Commonly x_i^* is chosen to be the right endpoint, left endpoint, or midpoint. # FTC ("integration and differentiation are inverse processes") Part 1: $\frac{d}{dx} \int_a^x f(t) dt = f(x)$. Know how to apply the chain rule with part 1! Part 2: $\int_a^b F'(x) dx = F(b) - F(a)$ Main application of FTC2: integrating the derivative of F tells us the net change in F(x) from x = a to x = b. eg, $\int_{t_1}^{t_2} v(t)dt$ = net distance traveled = net change in position from time t_1 to t_2 (not total distance traveled (in general)) ## **Applications** Area between curves: The formulas for the two main cases are: $\int_a^b [\text{top function}] - [\text{bottom function}] \, dx$ and $\int_c^d [\text{right function}] - [\text{left function}] \, dy$ Volume: We can find the volume of a solid by adding up areas of cross sections of the solid. The main formula is $\int_a^b A(x) \, dx$ or $\int_c^d A(y) \, dy$ where A(x), A(y) give the area of a cross section of the solid. The two main cases are: **Disks/Washers:** $A = \pi((\text{outer radius})^2 - (\text{inner radius})^2)$. Cross sections are perpendicular to the axis of rotation. Cylindrical shells: $A = 2\pi (\text{radius}) (\text{height})$. Cross sections are parallel (shells) to the axis of rotation. #### Work = Force \times Distance **Method I: Distance in pieces:** Chop up the distance and add up the work required to move each tiny distance $\Delta x \Rightarrow W = \int_a^b \text{force } dx$. Method II: Object in pieces: Chop up the object and add up the work required to move each piece the whole distance $\Rightarrow W = \int_a^b$ force \times distance dx. Hooke's Law: Force required to stretch a spring x units beyond natural length proportional to x: f(x) = kx. Useful formulas: Force = mass \times acceleration and density = $\frac{\text{mass}}{\text{volume}}$ **Note:** Pounds=unit of force and Kg= unit of mass Arc length $$L = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \text{ if } y = f(x), a \le x \le b.$$ $$L = \int_c^d \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy \text{ if } x = g(y), c \le y \le d.$$ Arc length function: $s(x) = \int_a^x \sqrt{1 + [f'(t)]^2} dt$ = length of arc from the point (a, f(a)) to (x, f(x)). #### Surface area of a solid of revolution Rotation about x-axis: $S = 2\pi \int y \, ds$, Rotation about y-axis: $S = 2\pi \int x \, ds$, where $$ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$ if $y = f(x), a \le x \le b$. $$ds = \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy \text{ if } x = g(y), c \le y \le d.$$ #### Center of mass Let ρ be the uniform density of a plate that is the region bounded by the curves f(x) and g(x), where $f(x) \geq g(x)$. **Moments** M_x and M_y : measure the tendency of a region to rotate about the x- and y-axis, respectively: $$M_x = \rho \int_a^b \frac{1}{2} \left([f(x)]^2 - [g(x)]^2 \right) dx, M_y = \rho \int_a^b x (f(x) - g(x)) dx.$$ Center of mass: Let $A = \int_a^b f(x) - g(x) dx$ be the area of the plate and $M = \rho \times A$ be the mass of the plate. Then the coordinates of the center of mass $(\overline{x}, \overline{y})$ are: $$\overline{x} = \frac{M_y}{M} = \frac{\int_a^b x(f(x) - g(x))dx}{A}$$, and $\overline{y} = \frac{M_x}{M} = \frac{\int_a^b \frac{1}{2} ([f(x)]^2 - [g(x)]^2) dx}{A}$ ### Hydrostatic Force **Pressure:** $P = \rho g d$, where $\rho = (\text{mass})$ density of fluid, $g = 9.8 \text{ m/s}^2$, d = depth below surface. **Hydrostatic Force:** $F = \int_a^b P \times A \, dx$, where A is the area of strips of height Δx and width determined by our function. ### Integration techniques **u-substitution:** works for integrating compositions of functions; pick u to be the 'inside' function. Integration by parts - undoing the product rule: $\int u \, dv = uv - \int v \, du$. Generally, picking u in this descending order works: Inverse trig Logarithm Algebraic (polynomial) \mathbf{T} rig Exponential Trig substitutions and integrals: See separate handout. ### Partial fractions: - If necessary, make a substitution to get a ratio of polynomials If the degree of the numerator is \geq the degree of denominator, do long division first. Then factor the denominator into linear terms and irreducible quadratics. # factor in denominator term in partial fraction decomposition $$(ax + b)^k \Rightarrow \frac{A_1}{ax + b} + \frac{A_2}{(ax + b)^2} + \dots + \frac{A_k}{(ax + b)^k}$$ $$(ax^2 + bx + c)^k \Rightarrow \frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_kx + B_k}{(ax^2 + bx + c)^k}$$ **Misc:** Sometimes you'll need to "complete the square": eg: $x^2 + 6x + 5 = x^2 + 6x + 9 - 9 + 5 = (x+3)^2 - 4$ (divide x coefficient by 2, square it, and add and subtract it. Note: works when coefficient of x^2 is 1) ### Improper integrals Type 1: infinite interval: $$\int_a^\infty f(x)dx = \lim_{t\to\infty} \int_a^t f(x)dx$$, $\int_{-\infty}^b f(x)dx = \lim_{t\to-\infty} \int_t^b f(x)dx$ ## Type 2: discontinuity in interval: - $$f$$ discontinuous at a : $\int_a^b f(x)dx = \lim_{t \to a^+} \int_t^b f(x)dx$ f discontinuous at b : $\int_a^b f(x)dx = \lim_{t \to b^-} \int_a^t f(x)dx$ $$f$$ discontinuous at $c, a < c < b$: $\int_a^b f(x) dx = \lim_{t \to c^-} \int_a^t f(x) dx + \lim_{t \to c^+} \int_t^b f(x) dx$ Note!: It is possible that an integral is both Type 1 and Type 2 - see the second midterm.